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Abstract

A layout optimization of passive constrained layer damping (PCLD) treatment for minimizing the
vibration response of cylindrical shells is presented with consideration of broadband transverse force
excitation. The equations governing the displacement responses, relating the integrated out-of-plane
displacement over the whole structural volume, i.e., the structural volume displacement (SVD), of a
cylindrical shell to structural parameters of base structure and multiple PCLD patches, are derived using
the energy approach and assumed-mode method. Genetic algorithm (GA) based penalty function method is
employed to find the optimal layout of rectangular PCLD patches with aim to minimize the SVD of the
PCLD-treated cylindrical shell. Optimization solutions of the locations of patches for PCLD treatment are
obtained under the constraint of total amount of PCLD materials in terms of percentage added weight to
the base structure. Effects due to number of patches, their aspect ratios, and total amount of added PCLD
weight are also studied. Examination of the optimal layouts reveals that the patches tend to increase their
coverage in the axial direction and distribute over the whole surface of the cylindrical shell for optimal SVD
reduction.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Passive constrained layer damping (PCLD) treatment has been an effective way to suppress
vibrations of and sound radiation from various structures. The pioneer work in the field could be
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traced back to late 1950s when Kerwin [1] derived an expression for an effective, complex, flexural
stiffness of the three-layer beams with damping core layer. His work was followed by a number of
investigations. DiTaranto [2] and Mead and Markus [3] extended Kerwin’s work and developed a
sixth order equation of motion governing the transverse displacement of a sandwich beam with
arbitrary boundary conditions. After that, different formulations and techniques have been
reported, e.g., Refs. [4–6]. The problem of computing damped natural frequencies and loss factors
is explicitly solved [7,8] for both beams and plates when simply support end conditions are
assumed. Analytical–numerical procedures are proposed to solve the problem when different
boundary conditions are assumed [9].
Most of these early works dealt with full coverage PCLD treatments that are evidently not

practical in purpose. For partially covered viscoelastically damped sandwich beams or plates,
Nokes and Nelson [10] were among the earliest investigators to provide the solution to the
problem. A more thorough analytical study was carried out by Lall et al. who solved, by using
three different approaches, the eigenvalue problem for a beam [11] and for a plate [12] with a
single damping patch. Kung and Singh [13] presented a refined method for analyzing the modal
damping of beams with multiple constrained-layer viscoelastic patches.
In addition to all above-described works on passive constrained layer damping (PCLD)

treatments for vibration suppression of beams and plates, the study of vibration and damping in
shells with added damping treatment has also been of interest to many researchers. Pan [14]
studied the axisymmetrical vibration of a finite length cylindrical shell with a viscoelastic core.
Jones and Salerno [15] investigated the effect of damping on the forced axisymmetrical vibration
of cylindrical shells with a viscoelastic core. Alam and Asnani [16,17] carried out the vibration and
damping analysis of a general multilayered cylindrical shell consisting of an arbitrary number of
elastic and viscoelastic layers with simply supported end conditions. Ramesh and Ganesan [18]
used a finite element method to solve for a cylinder-absorber system with thin axial strips which
bonded to the cylinder with a thin viscoelastic layer. Hu and Huang [19] developed a generic
theory for the PCLD treated shell with full coverage. Recently, Chen and Huang investigated the
damping effects of PCLD treatment of strip type along longitudinal direction [20] and along
circumference [21], respectively, on the forced response of a cylindrical shell. A thin shell theory in
conjunction with the Donnell–Mushtari–Vlasov assumptions is employed to yield their
mathematical model. Their parametric studies showed that thicker or stiffer CL warrants better
damping, and thicker VEM does not always give better damping than thinner ones when CL
exceeds a certain thickness.
These theoretical works and parametric studies on PCLD treatments for vibration and noise

suppression really provide assistance to design decision. However, studies based on the
optimization are quite less, particularly, in the optimum design of partial PCLD treatment of
cylindrical shell, there has been no existing literature to the authors’ knowledge. Marcelin et al.
[22] considered the partially covered beam structure and optimization with design variables being
the dimensions and the locations of all the viscoelastic layers. Special beam finite elements were
used to represent the behavior of the sandwich parts of the beam. Both theory and experiment [23]
show that for stiff viscoelastic layers the loss factor is greater for partial coverage than for full
coverage. Chen and Huang [24] presented a study on optimal placement of PCLD treatment for
vibration suppression of plates. In their optimization, the structural damping plays the main
performance index and the frequencies’ shift and PCLD thickness play as penalty functions.
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Topographical and complex optimal solution techniques were employed in searching for the
optimal value of CLD treatment.
The study presented in this paper attempts to arrive at an optimum design of partial PCLD

treatment of cylindrical shell by finding an optimal layout of multiple rectangular PCLD patches
of fixed thickness and material properties to minimize the forced vibration response under a
broadband transverse excitation. The equations relating the integrated out-of-plane displacement
over the whole structural volume, i.e., the structural volume displacement (SVD), of a cylindrical
shell to structural parameters of base structure and multiple PCLD patches are derived using
energy based approach and assumed-mode method. Genetic algorithm (GA) based penalty
function method is employed to find the optimal layout of rectangular PCLD patches with aim to
minimize the SVD of PCLD-treated cylindrical shell. Optimization solutions of rectangular
PCLD patches’ locations and dimensions are obtained under the constraint of total amount of
PCLD in terms of percentage added weight to the base structure. Effects due to the number of
patches and their aspect ratios, and total amount of added PCLD weight are also studied, towards
maximum vibration attenuation using minimum amount of PCLD patches.

2. Analytical model and formulation

2.1. Kinematic relation

A cylinder treated with multiple PCLD patches is modelled as a composite cylindrical shell
consisting of three layers, namely the base, constraining and viscoelastic layers, each referred to by
using the subscripts/superscripts s; c and v; respectively. A general configuration for a simply
supported cylinder treated with a PCLD patch p is shown in Fig. 1, with labeled design
parameters and design variables. With consideration of simplicity in patch fabrication, the
thickness and material property of constraining layer and viscoelastic core, respectively, are
assumed same for all patches. The layers have different thickness denoted by hi; where i ¼ s; c or
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Fig. 1. A simply-supported cylinder with one partial PCLD patch.
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v: Then, the mathematical model for the cylinder is derived following the procedure given by Chen
and Huang [20,21], but not limited to PCLD treatment of strip type along longitudinal direction
and along circumference.
Under the Donnell–Mushtari–Vlasov assumptions [25], the stress–strain relationship in

cylindrical shell and in constraining layer are described by

si
xx ¼

Ei

1� u2i
ðei

xx þ uiei
yyÞ;

si
yy ¼

Ei

1� u2i
ðei

yy þ uiei
xxÞ; i ¼ s; c;

si
xy ¼ Giei

xy; ð1Þ

where Ei; Gi; ni denote Young’s modulus, shear modulus, and the Poisson ratio, respectively, of
the material, s the stress and e the strain in the layers.
As the cylinder is approximated by a thin shell, the displacements in x and y directions

are assumed, as in Ref. [20], to vary linearly through the shell thickness, and the displacement
in the transverse direction is independent of z: Thus, the strain-displacement relations is
given by
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where ri (i ¼ s; c) represent the radius of the base cylinder and constraining, respectively; ux; uy;
and uz denote the displacements in axial, circumferential, and radial directions. For the
viscoelastic layer, the stress relation is given by

sv
xz ¼ G�

v e
v
xz;

sv
yz ¼ G�

v e
v
yz; ð3Þ

where G�
v is the complex shear modulus of the viscoelastic material, G�

v ¼ Gvð1þ jZvÞ with Zv the
damping loss factor. The strain–displacement relation of the viscoelastic layer is given by

ev
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x þ
@uv

z
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;

ev
yz ¼ bv

y �
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y
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þ
1
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@uv
z

@y
; ð4Þ

where bv
x and bv

y are the angular displacements of the viscoelastic layer, respectively, in axial and
tangential directions, and rv is its radius. Taking into consideration the Love simplifications, the
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assumption of no-slip condition between layers and ui
z ¼ uz; where i ¼ s; c; v; yields

ev
xz ¼

1

h
ðuc

x � us
xÞ þ

1

2hv

ðhc þ hz þ 2hvÞ
@uz

@x
;

ev
yz ¼

1

hv

�
1

2rv

� �
uc
y �

1

hv

þ
1

2rv

� �
us
y þ

hc

2hvrc

þ
hs

2hvrs

�
hc

4rvrc

þ
hs

4hvrs

þ
1

rv

� �
@uz

@y
: ð5Þ

2.2. Energy expressions

The kinetic energies of the layers with neglected in-plane inertia are
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Here the dot indicates derivative with respect to time; and p ¼ 1; 2;y; np with np the number of
PCLD patches. The strain energies are
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Assuming an external load, f ðx; y; tÞ; a transverse force applied on the cylinder surface, the
work done by this force can be expressed as

P ¼
Z L

0

Z 2p

0

rs f ðx; y; tÞwðx; y; tÞ dy dx: ð8Þ

2.3. Equation of motion

The dynamic response of the PCLD treated cylinder excited by the external transverse load can
be calculated by substituting the kinetic and strain energies into Lagrange’s equation

d

dt
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where qi represents the ith generalized co-ordinate, T and U are, respectively, the kinetic and
strain energy of the whole system expressed by

T ¼ Ts þ Tv þ Tc;

U ¼ Us þ Uv þ Uc: ð10Þ

For a cylinder, the displacements can be approximated by
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where W ; Ui and Vi ði ¼ s; cÞ are the assumed displacement shapes and z; Zi and xi are the
generalized co-ordinates of the displacement response in cylinder radial, axial and circumferential
directions, respectively.

2.4. Solutions of displacement response

Limiting the problem to the cylinder with simply supported ends, the mode shape functions can
be assumed as follows:

Wmnðx; yÞ ¼ sin
mpx

L

� �
cos nðy� fÞ;

Ui
mnðx; yÞ ¼ cos
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L

� �
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L

� �
sin nðy� fÞ: ð12Þ

Using above shape functions and substituting Eqs. (6)–(8) into Lagrange’s Eq. (9) yield the
equation of motion of the cylinder in the form

½M�f .qg þ ½K �fqg ¼ fFg; ð13Þ

where ½M� ¼ ½Ms þ Mv þ Mc�; the mass matrix, and ½K � ¼ ½Ks þ Kv þ Kc�; the stiffness matrix of
the PCLD-treated cylinder. Vector fqg ¼ ½qTz ; q

sT

Z ; q
sT

x ; q
cT

Z ; qcT

x �T is a column vector containing the

ARTICLE IN PRESS

H. Zheng et al. / Journal of Sound and Vibration 279 (2005) 739–756744



modal coefficients and fFg is the vector of generalized force, of which the first m 
 n elements can
be written as

fFgm
n ¼ �
Z L

0

Z 2p

0

rs f ðx; y; tÞWijðx; yÞ dy dx

� �T
;

i ¼ 1; 2;y;m; j ¼ 1; 2;y; n: ð14Þ

All others are zeros since only a transverse load is applied on the cylinder surface. Further,
considering the case of unit time-harmonic point force with a circular frequency o; the vector of
generalized co-ordinates become

fqg ¼ f *qgejot ð15Þ

and the generalized transverse load for the ði; jÞth modal is

Fijðx; y; tÞ ¼ �rsWijðx�; y
�Þejot ¼ *Fijðx�; y

�Þejot; ð16Þ

where ðx�; y�Þ denotes the location of the transverse load. Under the excitation of this time-
harmonic force, the system equation can be written as

½�o2M þ K �f *qg ¼ f *Fg: ð17Þ

Solving this system equation yields the solution of generalized displacement at the circular
frequency, o: Multiplying them by the assumed modes for the structure yields the physical
displacement response at any location, ðx; yÞ; of the cylinder.

3. PCLD layout optimization

3.1. Objective function

With the objective of minimizing the vibration response of the cylinder, the out-of-plane
displacement complex amplitude is obviously the quantity of interest. Since the displacement is
location dependent, another quantity representing the global displacement response, i.e., SVD,
which is defined as the integration of the displacement over the cylinder surface as

DðoÞ ¼
Z L

0

Z 2p

0

juzðx; y;oÞjrs dy dx; ð18Þ

where juzðx; y;oÞj is the module magnitude of complex out-of-plane displacement at cylinder
surface location ðx; yÞ: This SVD is a function of the layout of the PCLD patches and the total
amount of PCLD material used as well as the excitation level and location. Undoubtedly,
minimizing the SVD would lead to significant reductions in the vibrational energy of whole
cylinder.
Furthermore, as the SVD depends upon the frequency, an integral criterion over an appropriate

frequency range is required for the case of broadband excitation. A solution that meets technical
interest is

f ¼
1

omax � omin

Z omax

omin

DðoÞ do: ð19Þ
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Here omin and omax are, respectively, the minimum and maximum excitation frequencies in rad/s.
In the optimization that follows, the broadband SVD of the cylinder defined by expression (19)
together with Eq. (18) is chosen as the objective function to be minimized.
Note that the SVD originates from active structural acoustic control (ASAC) [26] where, in

order to implement the structural sensing strategy, the radiated sound power by a vibrating planar
structure is simply related to its SVD in the low frequency region. So minimizing the SVD would
lead to significant reductions of the sound power. This terminology is used here just for defining
the global displacement response of the cylinder. In ASAC, the SVD is defined as the integration
of complex out-of-plane displacement, uzðx; y;oÞ; over the whole structure surface. But for the
problem here, the SVD is defined as the integration of the module magnitude of displacement,
juzðx; y;oÞj; over the structural surface. Under this definition, certainly, the larger the
displacement at any particular point is, the SVD of considered structure would be larger.

3.2. Variables and constraints

Assuming that only rectangular patches are used, the layout of one PCLD patch can be
completely defined by four design variables, namely the axial location, angular location, axial
length and angular length, as shown in Fig. 2. For the convenience of fabrication, all the PCLD
patches are kept same thickness and Young’s modulus for constraining layer and viscoelastic
layer, respectively. In this circumstance, the number of variables of optimization for the problem,
i.e., the design parameters to be optimized, are 4
 np provided that np patches are used for the
treatment.
In real-life vibration control design, the added weight to the base structure owing to CLD

treatment is always restricted to a small amount of percentage of the structure. Thus, in the layout
optimization, the total amount of PCLD material is fixed in each computation run. The problem
is then constrained to ensure physical feasibility in which the patches are bounded within the area
of the cylinder surface and do not overlap each other.
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3.3. Optimization strategy

Several optimization algorithms/methods are available to solve the problem defined by
expressions (17)–(19). Most algorithms are designed so far to find a local optimum. One example
is the sequential quadratic programming, SQP, algorithm which has shown to be robust and
efficient for most optimization problems [27]. However, many optimization problems have several
local optima and it is often of interest to find the best optimum in the whole feasible design
domain, i.e., the global optimum. Since no mathematical conditions for global optimality exist, a
global optimum is usually more difficult and time consuming to find than a local optimum. Some
methods have, nevertheless, been developed to find an approximation of the global optimum
without scanning the whole feasible design domain. The genetic algorithm, or shortly GA, is such
a method that is developed to search for the approximation of global optimum. The GA has been
used previously by a lot of researchers to solve various non-linear optimization problems [28].
Here the GA-based penalty function method is also employed for solving the problem.
With above definition of the bonds on the design variables, the optimization problem leads to a

large design domain. Thus, direct application of GAs may not yield good results. In order to
obtain a solution closest to global optimum, the design space have to be further constrained.
Therefore, four different approaches are used to restrict the number of design variables.

1. Approach 1: Each PCLD patch consists of the four design variables defined earlier, namely, the
axial location, angular location, axial length and angular length.

2. Approach 2: Each PCLD patch consists of two design variables, namely the axial location and
the angular location. The axial length and angular length are fixed and all patches are of same
size. For a fixed mass of PCLD materials, different number of patches are obtained by fixing
the axial length and varying the angular length of each PCLD patch. Therefore, as number of
patches increases, the angular length of each patch decreases.

3. Approach 3: This is similar to Approach 2 except for the additional bounds imposed on the
location for each patch. The surface of the cylinder are divided into two segments such that the
number of patches are evenly distributed in each segments.

4. Approach 4: This is similar to Approach 3 except that the cylinder is divided into three ring
segments instead of two ring segments in Approach 3.

4. Results and discussion

The geometric and material properties of the cylinder for implementing the PCLD treatment
are shown in Table 1. The length and radius of the cylinder are, respectively, 0.35 and 0:1 m: The
loss factor of viscoelastic material, Zv; and also its shear modulus, Gv; are assumed invariant with
frequency. For comparison purpose, a small structural damping is introduced in the form of a
complex elastic modulus for the base shell and the constraining layers: E ¼ *Eð1þ jZÞ; where Z is
the structural loss factor. A Z value of 0.0001 is used. With this setup, GA is applied to the
optimization problem for each of the approaches outlined. For each set of parameters, defined in
terms of the total amount of PCLD material, the number of patches and the approach used, five
runs are executed to arrive at the layout with the lowest SVD of the cylinder.
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A unit harmonic transverse force is applied at the middle cylinder, i.e., y� ¼ 0 and x� ¼ L=3;
and the excitation frequency is from f ¼ 0 Hz to 3:2 kHz where f ¼ o=2p: Before performing the
optimization, the analytical model and associated solution procedure are validated by comparing
the natural frequencies of bare cylinder with the theoretical predictions given in Ref. [25]. For
cylinder with PCLD treatment, the frequency response at the force location is compared to results
obtained by a multi-physics finite element code. The cylinder with single PCLD patch treatment is
considered. Good agreements between the values are observed for both cases.
For the convenience of the discussion that follows, resonant frequencies of the seven modes of

the considered cylinder within the excitation frequency range are listed in Table 2.

4.1. Comparison of four optimization approaches

For each of the four optimization approaches, the optimal layouts for different number of
patches for a fixed total amount of PCLD material equivalent to an added weight of 2.4% are
obtained. The reduction in SVD achieved, RSVD; based on these layouts are shown in Fig. 3 where
the dB values in Y -axis is calculated by

RSVDðoÞ ¼ 20 log
DðoÞ
D0ðoÞ

� �
ðdBÞ; ð20Þ

where D0ðoÞ and DðoÞ are SVDs of the cylinder at circular frequency, o; without and with PCLD
patches.
The figure indicates that a good optimal layout cannot be easily obtained based on Approach 1,

as indicated by the lower reduction achieved and irregularity in the reduction achieved. This may
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Table 2

Cylinder resonant frequencies below maximum excitation frequency

Mode ðm; nÞ Natural frequency (Hz)

(1,3) 818

(1,4) 906

(1,5) 1285

(1,2) 1376

(2,4) 1643

(2,5) 1648

(2,3) 2212

Table 1

Properties of materials used in analysis of cylindrical shell

Properties Shell (aluminum) Constraining material Viscoelastic material

Elastic modulus, *E ðGPaÞ 70ð1þ 0:0001jÞ 49ð1þ 0:0001jÞ —

Density, r ðkg=m3Þ 2:71
 103 7:50
 103 1:00
 103

Thickness, h (m) 0.002 0.0002 0.0002

Shear modulus, G (MPa) — — 0:896ð1þ 0:5jÞ
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due to the large resulting design space and under such environment, there is higher likelihood that
the result obtained from GA is dominated by a few moderately good design which prevent further
innovation.
On the other hand, Approach 4 (dividing the cylinder surface into 3 ring segments) is the best

approach since the optimal layouts obtained consistently give the largest reduction in SVD. With
Approach 2, although it gives an optimal layout also with large reduction in SVD using the least
number of patches, regularity in the reduction achieved cannot be achieved. As for Approach 3
(dividing the cylinder surface into three ring segments), the reduction achieved is consistently
lower than Approaches 2 and 4. This result indicates that a well-behaved problem must be
suitably constrained to reduce the possible design space, but the constraints imposed must not
preclude the actual optimal solution.

4.2. Attributes of number of PCLD patches

Further examining the results shown in Fig. 3, it is indicated that Approaches 2–4 show similar
trends in the results in which the SVD decreases with diminishing reduction when the number of
patches increases. Beyond a certain number of patches, further reduction achieved becomes
negligible. The fact that the trend is not dependent on the approach used implies that this is an
intrinsic property of the system. In particular, reviewing the optimal solutions obtained using
Approach 4, it can be seen that when the number of patches is increased from 3 to 6, about 1 dB
reduction in the cylinder SVD could be achieved. However, when the number of patches is further
doubled, the SVD reduction obtained is only 0:4 dB: So for the considered cylinder and the
excitation condition here, under the constraint of 2.4% PCLD added mass, it is deduced that the
optimal number of patches is between 6 and 8.
The layouts obtained using Approach 4 for the cases of 3-, 6-, 9- and 12-patch are shown in

Fig. 4. Non-dimensional axial and circumferential co-ordinates of the central locations, (y0=2p;
z0=L), of all optimal patches shown in the figure are given in Table 3.
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Fig. 3. Comparison of optimal solutions obtained based on the four approaches outlined.
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4.3. Attributes of an optimal layout

Optimal layouts with different number of patches obtained using Approaches 2–4 are examined
to determine the attributes of an optimal layout. As shown in Fig. 5 for the case of 12-patch used,
the layout obtained using Approach 4 that gives the largest reduction, the patches tend to
increase coverage in the axial direction rather than the angular direction. On the other hand, in
Approach 3 in which the patches cannot maximize its coverage in axial direction due to the
constraints imposed, lower reduction in SVD is observed. In addition, Approach 2, in which the
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Fig. 4. PCLD patches layout obtained using Approach 4.

Table 3

Non-dimensional axial ðx0=LÞ and circumferential ðy0=2pÞ co-ordinates of central locations of the patches shown

in Fig. 4

No. of patches Co-ordinates S=N of patch

1 2 3 4 5 6 7 8 9 10 11 12

3 Axial 0.184 0.515 0.831

Circum. 0.500 0.789 0.125

6 Axial 0.177 0.177 0.529 0.574 0.809 0.860

Circum. 0.528 0.814 0.569 0.819 0.950 0.500

9 Axial 0.162 0.162 0.162 0.493 0.507 0.500 0.824 0.838 0.853

Circum. 0.486 0.004 0.867 0.047 0.531 0.689 0.931 0.811 0.642

12 Axial 0.177 0.184 0.184 0.191 0.500 0.515 0.522 0.515 0.824 0.830 0.846 0.853

Circum. 0.004 0.289 0.661 0.867 0.247 0.319 0.722 0.931 0.147 0.000 0.864 0.375
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Fig. 5. Comparison of optimal layout for configuration using 12 patches.

Table 4

Non-dimensional axial ðx0=LÞ and circumferential ðy0=2pÞ co-ordinates of central locations of the patches shown

in Fig. 5

Approach Co-ordinates S=N of patch

1 2 3 4 5 6 7 8 9 10 11 12

2 Axial 0.157 0.157 0.193 0.314 0.343 0.364 0.429 0.357 0.700 0.726 0.814 0.857

Circum. 0.506 0.139 0.986 0.917 0.375 0.044 0.944 0.722 0.903 0.561 0.506 0.792

3 Axial 0.189 0.230 0.311 0.344 0.345 0.318 0.655 0.770 0.811 0.811 0.872 0.858

Circum. 0.500 0.000 0.172 0.500 0.417 0.800 0.208 0.767 0.861 0.486 0.500 0.617

4 Axial 0.177 0.184 0.184 0.191 0.500 0.515 0.522 0.515 0.824 0.830 0.846 0.853

Circum. 0.004 0.289 0.661 0.867 0.247 0.319 0.722 0.931 0.147 0.000 0.864 0.375
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patches’ positions are not constrained, also arrived at similar layout obtained using Approach 4.
This indicates that maximization of coverage in the axial direction is an attribute of an optimal
layout since it is independent of the approach used. Furthermore, in all three layouts shown in
Fig. 5, the patches tend to distribute over the whole surface of the cylinder. This is thus another
attribute of an optimal layout.
Table 4 gives the non-dimensional axial and circumferential co-ordinates of the central

locations, (y0=2p; z0=L), of all optimal patches shown in Fig. 5.
Based on the above observations, a general layout shown in Fig. 6 is proposed for a

configuration with 12 patches. It resembles the spatially distributed cosine shaped sensor layout

ARTICLE IN PRESS

Fig. 7. SVDs of the cylinder with PCLD layouts obtained using (i) the spatially distributed cosine shaped layout and

(ii) that by Approach 4.

Fig. 6. PCLD patches layout approximated by the spatially distributed cosine shaped layout.
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developed in Ref. [29] for ASAC. The reduction of SVD obtained based on this general layout is
20:0 dB: This reduction is 2:4 dB less than the reduction resulting from the best layout obtained
based on Approach 4. The SVDs of the cylinder with these two PCLD layouts and comparison
with that of the plain cylinder are shown in Fig. 7. More displacement reduction are observed at
resonant frequencies of lower mode order than higher more order, e.g., the largest SVD reduction
is achieved at (1,2)th mode frequency, followed by significant reduction at (1,3)th mode frequency.
The SVD reductions at other five mode frequencies are different from each other but, through
PCLD layout optimization, the global displacement responses of the cylinder at these resonant
frequencies are nearly in same level, although they are so different in magnitude for the bare
cylinder.

4.4. Effects of the patches’ aspect ratio

To determine the influence of the patches’ shape on the SVD reduction achieved and since
only rectangular patches are used, a dimensionless parameter, aspect ratio, i.e., the ratio of
axial length to angular length of the patch, is defined to characterize the shape. The results,
as shown in Fig. 8 for the case with 12-patch, indicate that the reduction of the SVD
decreases when the ratio is decreased. This is consistent with the previous observation where we
found that in an optimal layout, the patches tend to increase coverage in the axial direction
rather than the angular direction. Thus, patches with large ratio of axial length to the angular
length should be used in the layout design. Numerical results for the other considered case show
similar trends.
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Fig. 8. Variation of SVD with aspect ratio of the patches.
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4.5. Effects of total amount of PCLD used

The result is shown in Fig. 9 where the percentage shown is the percentage of added weight of
PCLD patches to the weight of base cylinder. It can be seen that the degree of vibration
attenuation achieved increases as the total amount of PCLD materials increases. The optimal
numbers of patches are indicated by the dashed line in the figure. These results imply that greater
structural volume displacement reduction can be achieved when the PCLD patches are spread out
over the whole surface of the cylinder.

5. Conclusion

The optimization of the layout of PCLD patches for (SVD) reduction of a simply supported
cylinder excited by a broadband transverse force is presented in this paper. An analytical model is
developed using the energy method to relate the SVD of cylinder to the physical parameters of the
base cylindrical shell and all PCLD patches for the treatment. GA-based penalty function method
is employed to optimize PCLD patches’ locations and dimensions with the aim of minimizing the
structural displacement response under given constraint of total amount of PCLD used. The
optimal analyses indicate that for a fixed number of patches and amount of PCLD material, there
are two attributes of an optimal layout. First, the patches tend to increase their coverage in the
axial direction; and second, the patches tend to distribute over the whole surface of the cylinder.
Other optimal analysis findings include that rectangular patches with large ratio of axial length to
angular length produce better damping effects; and the degree of vibration attenuation of the
cylinder with PCLD treatment increases with the increase of the total amount of PCLD materials
used.
It is worth to point out that the work presented in this paper is limited to the case where the

cylinder is simply supported at its two ends. It is, therefore, meaningful to carry out further study
to examine the influence of boundary conditions on optimum of PCLD layout for minimizing its
vibration response. Furthermore, volume displacement of the cylindrical shell is considered as the
cost function to be minimized. So one more meaningful work is to perform the optimization study
of PCLD layouts targeting to minimize other objective functions indicating the vibration response
of the cylinder and associated sound radiation such as mean-square velocity, farfield pressure at
pre-determined field points, and radiated sound power from whole vibrating structure.
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Fig. 9. Effects of increasing the total amount of PCLD patches used.
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